
Week 1 - Friday

 What did we talk about last time?
 Basic programming model
 Other Java stuff
 References
 Static
 Inner classes

 Java handles errors with exceptions
 Code that goes wrong throws an exception
 The exception propagates back up through the call stack until

it is caught
 If the exception is never caught, it crashes the thread it's

running on, often crashing the program

 There are two kinds of exceptions:
 Checked
 Unchecked

 Checked exceptions can only be thrown if the throwing code is:
 Surrounded by a try block with a catch block matching the kind of

exception, or
 Inside a method that is marked with the keyword throws as throwing the

exception in question
 Unchecked exceptions can be thrown at any time (and usually

indicate unrecoverable runtime errors)

 Checked exceptions
 FileNotFoundException
 IOException
 InterruptedException
 Any exception you write that extends Exception

 Unchecked exceptions
 ArrayIndexOutOfBoundsException
 NullPointerException
 ArithmeticException
 Any exception you write that extends Error or RuntimeException

// try-with-resources automatically closes Scanner
try (Scanner in = new Scanner(file)) {
while (in.hasNextInt()) {

process(in.nextInt());
}

} catch (FileNotFoundException e) {
System.out.println("File " +
file.getName() + " not found !");

}

 Members
 Methods
 Why are they useful?

Monolitihic
main()
function

• Code and data
together

Work
divided into

functions

• Code separated,
but data shared

Objects

• Code and data
separated

 A template or prototype for an object

Class:
Human

Object:
David Bowie

Object: Joe
Biden

Class:
Company

Object:
Microsoft

Object:
Boeing

 Encapsulation
 Dynamic dispatch
 Polymorphism
 Inheritance
 Self-reference

 Information hiding
 We want to bind operations and data tightly together
 Consequently, we don't want you to touch our privates
 Encapsulation in Java is provided by the private and
protected keywords (and also by default, package level
access)

 Hardcore OOP people think that all data should be private
and most methods should be public

public class A {
private int a;

public int getA() {
return a;

}

public void setA(int value) {
a = value;

}
}

 Allows code reuse
 Is thought of as an is-a relationship
 Java does not allow multiple inheritance, but some languages

do
 Deriving a subclass usually means creating a "refined" or

"more specific" version of a superclass

public class B extends A {
// Has member and methods from A

}

public class C extends A {
// Has A stuff and more
private int c;
public int getC(){ return c; }
public void increment() { ++c; }

}

 A confusing word whose underlying concept many
programmers misunderstand

 Polymorphism is when code is designed for a superclass but
can be used with a subclass

 If BMW235i is a subtype of Car, then you can use an
BMW235i anywhere you could use a Car

// Defined somewhere
public void drive(Car car) {
…

}

public class BMW235i extends Car {
…

}

Car car = new Car();
BMW235i bimmer = new BMW235i();
drive(bimmer); // okay
drive(car); // okay

 Polymorphism can be used to extend the functionality of an
existing method using dynamic dispatch

 In dynamic dispatch, the method that is actually called is not
known until run time

public class A {
public void print() {

System.out.println("A");
}

}

public class B extends A {
@Override
public void print() {

System.out.println("B");
}

}

A a = new A();
B b = new B(); // B extends A
A c;

a.print(); // A
b.print(); // B

c = a;
c.print(); // A
c = b;
c.print(); // B

 Objects are able to refer to themselves
 This can be used to explicitly reference variables in the class
 Or it can be used to provide the object itself as an argument to

other methods

public class Stuff {
private int things;

public void setThings(int things) {
this.things = things;

}
}

public class SelfAdder {
public void addToList(List list){
list.add(this);

}
}

 Java provides syntax that allows you to call another
constructor from the current class or specify which superclass
constructor you want to call

 The first line of a constructor is a call to the superclass
constructor

 If neither a this() or a super() constructor are the first
line, an implicit default super() constructor is called

public class A {
private double half;
public A(int value){

half = value / 2.0;
}

}

public class B extends A {
public B(int input) {

super(input); // calls super constructor
}

public B() {
this(5); // calls other constructor

}
}

 An interface is a set of methods which a class must have
 Implementing an interface means making a promise to

define each of the listed methods
 It can do what it wants inside the body of each method, but it

must have them to compile
 Unlike superclasses, a class can implement as many interfaces

as it wants

 An interface looks a lot like a class, but all its methods are
empty

 Interfaces have no members except for (static final)
constants

public interface Guitarist {
void strumChord(Chord chord);
void playMelody(Melody notes);

}

public class RockGuitarist extends RockMusician
implements Guitarist {

public void strumChord(Chord chord) {
System.out.print("Totally wails on that " +
chord.getName() + " chord!");

}

public void playMelody(Melody notes) {
System.out.print("Burns through the notes " +
notes.toString() + " like Jimmy Page!");

}
}

 A class has an is-a relationship with interfaces it implements,
just like a superclass it extends

 Code that specifies a particular interface can use any class
that implements it

public static void perform(Guitarist
guitarist, Chord chord, Melody notes) {
System.out.println("Give it up " +

"for the next guitarist!");
guitarist.strumChord(chord);
guitarist.playMelody(notes);

}

 Generics
 Java Collections Framework
 Computational complexity
 Read section 1.4

 Read section 1.4
 Work on Assignment 1
 Due next Friday before midnight!

 Start on Project 1
 No class Monday!

	COMP 2100
	Last time
	Questions?
	Assignment 1
	Project 1
	Exceptions
	Exceptions
	Kinds of exceptions
	Examples of exceptions
	Exceptions in code
	OOP
	What is an object?
	What is a class?
	Object-Oriented Programming
	Encapsulation
	Encapsulation example
	Inheritance
	Inheritance example
	Polymorphism
	Polymorphism example
	Dynamic dispatch
	Dynamic dispatch example
	Dynamic dispatch example
	Self-reference
	Self reference example
	Self reference example
	Constructor syntax
	Constructor example
	Interfaces
	Interface basics
	Interface definition
	Interface use
	Usefulness
	Upcoming
	Next time…
	Reminders

